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This work aims at a geometrical semimicroscopic model to study the reentrant isotropic-nematic phase
transition. It will be assumed that the micellar change of shape in lyotropics can be understood as the defor-
mation of an ellipsoid which is assumed to have the idealized form of a micelle. It will be shown that such
deformation is characterized by two kinds of quantities. The first one, which is a scalar determined by the
ellipsoidal eccentricity, gives the intensity of the ellipsoidal deformation. The second one, which has a tensorial
nature, describes the spatial distribution of such deformation and is proportional to the tensorial nematic order
parameter. We construct the invariants of such deformation and couple it with the orientational order parameter
to study the reentrant isotropic–nematic phase transition. We determine the thermodynamical characteristics of
this phase transition and shown that it is a second-order phase transition. By comparing the theory so con-
structed with the experimental data, the parameters of the model will be determined.
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I. INTRODUCTION

The diversity of phases and structures found in liquid
crystal materials makes them ideal substances to study phase
transitions �1�. Continuous and noncontinuous phase transi-
tions have been found on them and, sometimes, unexpected
phase transitions are observed on their sequence of phases, in
particular on the so-called reentrant phases. In this way, con-
figurations apparently more symmetric occur as the tempera-
ture is reduced, insinuating the violation of one of the basic
laws of nature where a decrease of the temperature would be
followed by a decrease of the entropy, not by an increase �2�.
Such �apparently� contradictory outcomes are found in lyo-
tropic liquid crystal �LLC� materials �3,4�. In this LLC sys-
tem, the classical isotropic �I� phase is observed at high tem-
peratures as well as a reentrant isotropic �IRE� phase at lower
temperatures. Between these two limiting isotropic phases an
important sequence of phase transitions can be found, includ-
ing the discotic nematic �ND�, the biaxial nematic �NB�, and
the calamitic nematic �NC�. All of them have been subject to
experimental and theoretical studies by several authors
�5–16�, with special attention to the biaxial nematic and re-
entrant phases. Using experimental data, of order parameter
and density, a comparison between the nature of the two
nematic-isotropic phase transitions present in the above se-
quence of phases has been made �12,17�. The nonusual as-
pect of these transitions follows from the fact that, under
normal conditions, the NC-I phase transition would be ex-
pected to be a consequence of the random thermal fluctua-
tions that, due to the temperature increase, becomes large
enough to overcome the molecular orientation, annulling
their global coherent alignment �1�. However, as such a
mechanism cannot be responsible for the NC-IRE phase tran-
sition, which occurs with the reduction of the temperature,
this reentrant phase transition must result from another

mechanism �7,18�. Nowadays, it is accepted that the lyotro-
pic micellar change of form is the cause of the NC-IRE tran-
sition; with the temperature reduction, the micellar aniso-
tropic form of the lyotropic system is reduced to a point in
which it is not enough to sustain an ordered nematic phase.
Our aim here is to provide a mean-field theory which ex-
plains how this micellar shape transformation alters the sta-
bility of the nematic phase, and propose how such a mecha-
nism is coupled with the micellar orientation.

Some time ago, the high temperature of the NC-I phase
transition was found to be essentially different from the
lower temperature of the NC-IRE phase transition. While the
NC-I transition has the usual behavior of the nematic-
isotropic phase transition, a first-order phase transition with a
very small latent heat gap �1�, the NC-IRE transition, seems to
be a second-order phase transition and, furthermore, presents
a critical exponent which is different from the higher tem-
perature one �9,12,17�. We will construct here a pseudomi-
croscopic theory which provides a fundament to these facts.
Such theory will follow from a previous study of the micellar
deformation �19� and it will provide a description of how the
anisotropic form of the micelles is coupled with its orienta-
tion. It will be shown that the lyotropic micellar deformation
is in fact a tensor, whose intensity is measured by the ellip-
soidal eccentricity and the directional components are given
by the nematic order parameter tensor. As a consequence of
this approach we will demonstrate that the NC-IRE phase
transition is in fact a second-order phase transition. We will
construct a Landau �1,20� mean-field theory which, as usual,
cannot be used to determine the exact values of the critical
exponents but, nonetheless, it will provide solid evidence
that they may not be equal.

II. FUNDAMENTALS

Recently, a geometrical model has been introduced to
compute the elastic constants of a nematic liquid crystal �19�.
One important aspect of this model is that it can be used to*simoes@uel.br
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provide a pseudomicroscopic interpretation to the micellar
deformation in lyotropic liquid crystals. Namely, by consid-
ering a three-dimensional quadratic form, Aijxixj =cte, where
the matrix Aij characterizes an ellipsoid if it has a set of real
and positive eigenvalues. Its eigenvectors correspond to the
ellipsoid semiaxis directions and the eigenvalues to its
lengths. It has been found �19� that when the de Gennes �1�
prescription to construct microscopic order parameters is ap-
plied to Aij, the resulting order parameter Dij =Aij
−�ij Tr�Aij� /3 can be interpreted as a micellar deformation; it
measures how an ellipsoid differs from a sphere. For the
uniaxial case, the corresponding micellar deformation is
given by

Dij =
e

1 − e
�1

3
�ij − ninj� , �1�

which reveals that the deformation of the micelles, conduced
by the change of micellar eccentricity �e�, is coupled with a
tensor, which is formally identical with the orientation order
parameter Qij =�ij /3−ninj of the uniaxial nematic phase,
where n� is the direction of the main direction axis of a
uniaxial ellipsoid. Of course, in the context of a geometrical
interpretation of the micellar geometry, Qij is a spatial mea-
sure of the micellar deformation. Nevertheless, taking the
proper statistical averages to define a macroscopic order pa-
rameter and to describe the deformation of the micelles, the
proper macroscopic order parameter has been shown to be
given by Dij =DSQij, where D=e / �1−e�, S is the scalar or-
der parameter, and Qij is the macroscopic order parameter
where now n� is the director.

In order to construct the free energy determined by this
order parameter we need to calculate the invariants deter-
mined by Dij. By adopting the usual prescription which as-
sures that it is enough to consider the trace of the order
parameter, we arrive at

t1 = Tr�Dij� = 0,

t2 = Tr�DikDkj� = 2
3D2S2,

t3 = Tr�DikDklDlj� = − 2
9D3S3,

t4 = Tr�DikDklDlmDmj� = 2
9D4S4. �2�

Consequently, to study the deformation of the micelles,
the free energy Fd can be expressed by

Fd = a1t1 + a2t2 + a3t3 + a4t4 = − a2D2S2 − a3D3S3 + a4D4S4,

�3�

where a2, a3, and a4 are the Landau phenomenological coef-
ficients �20�. This free energy describes the deformation of
the micelles; if we want to describe the orientational order of
the nematic material we must use the usual free energy Fo
�1�,

Fo = − b2S2 + b3S3 + b4S4. �4�

In this context, if we want to study the coupling between
the micellar deformation and its orientation, we must con-
sider the total free energy, F=Fd+Fo,

F = − c2S2 − c3S3 + c4S4, �5�

where c2=a2D2+b2, c3=a3D3−b3, and c4=a4D4+b4.
This result shows how the Landau coefficients of the ex-

pansion of the free energy in terms of the order parameter S
are the functions of the micellar eccentricity through the pa-
rameter D. Consequently, to study the coupling between the
deformation of the micelles and its orientational order, the
free energy to be studied is the one given by Eq. �3�.

III. RESULTS AND DISCUSSION

With the free energy stated, Eq. �5�, the NC-IRE phase
transition can be carefully considered. Along the nematic
phase and for temperatures below the NC-I phase transition
point, Eq. �5� gives the following expression for the order
parameter:

S =
3c3 + �9c3

2 + 32c2c4

8c4
, �6�

where, according to Landau, c2 would be proportional to the
temperature �T� in the range of the NC phase. Making
c2=−��9c3

2 / �32c4���, where �=�T+Tc and Tc is the calam-
itic nematic-isotropic �or reentrant isotropic� transition tem-
perature, we arrive at

S =
3c3

8c4
�1 + �1 − ��� . �7�

By substituting the values found in Eq. �5� in this equa-
tion we arrive at

S =
3a3

8�a4D4 + b4�
�D3 −

b3

a3
��1 + �1 − ��� . �8�

A straightforward substitution of this equation on the free
energy given by Eq. �3� gives

F = −

27a3
4�D3 −

b3

a3
�4

4096�a4D4 + b4�4 �8 − 3���4 − ��� + 8�1 − ���3/2� ,

�9�

which shows that this free energy presents a change in the
ground-state configuration �from S=0 to S�0�, when two
conditions are fulfilled,

� �
8

9�
and D ��3 b3

a3
, �10�

which reveals the existence of two phase transition points.
The first one is attained when ��8 /9� and describes the
usual NC-I first-order phase transition, which occurs with a
discontinuity in S, given by

�S =
3a3

8�a4D4 + b4�
�D3 −

b3

a3
��1 + �2� . �11�

The other phase transition is a continuous phase transi-
tion, occurring when D→�3b3 /a3 and, according to Eq. �8�, it
happens without a gap in the value of S. As D is entirely
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determined by the micellar eccentricity, this last transition
would be the N-IRE second-order reentrant phase transition
�21,22�. Furthermore, the free energy equation �2�, determin-
ing the thermal behavior of e, reveals that it would have a
thermal dependence given by a usual Landau theory, which
would have the canonical form

D = d�� − Tc. �12�

As a consequence of this study, the temperature depen-
dence of the order parameter would be given by

S =
3a3

8�a4
4d4�� − Tc�2 + b4�

�d�� − Tc
3 −

b3

a3
��1 + �1 + ��� .

�13�

In order to compare this curve with the experimental re-
sult, we have used the optical birefringence ��n� as a func-
tion of temperature, obtained as described in Refs. �9,12,13�
near the NC-IRE and NC-I phase transitions. This phase se-
quence, NC-IRE �11.0 °C� and NC-I �47.0 °C�, was deter-
mined by optical microscopy, optical refractometry, and op-
tical conoscopy in a lyotropic mixture �concentration in
weight percent� of potassium laurate �KL: 29.4�, decanol
�DeOH: 6.6�, and water �64.0�. The macroscopic order pa-
rameter ��n� of the NC phase can be related to the order
parameter �S� by �n=�S, where � is a normalization con-
stant. The constant � is chosen in such a manner that the
maximum of �n corresponds to �n=1 and in this way, Eq.
�13� can be rewritten as

S = A
���T + 	 + c�3 − c3/2�

�d + �T + 	 + c�2�
�b + �1 − T� , �14�

where A=3��a3 / �8da4�, b=1 /�1− to, c3/2=�3/2b3 /
�d3�1− to�3/2a3�, d=−�2b4 / �d4�1− to�2a4�, 	= �to−�Tc� /
�1− to�−c. We have linearly rescaled the temperature scale,
�= ��1− to�T+ to� /�, by choosing to in such a way that T=1
corresponds to the last experimental data measured below
the NC-I, and T=0 corresponds to the first measured experi-
mental data above the NC-IRE phase transition. Furthermore,
the parameter 	 has been introduced to measure the distance
from the first measured experimental data to the point of the
NC phase. The profile of the curve that we have obtained is
shown in Fig. 1 along the NC phase and near the NC-IRE and
NC-I phase transitions.

To sum up, we have proposed a geometric model to study
the lyotropic micellar deformation and its coupling with the
nematic orientation. With the invariants of this theory we
have constructed a Landau model to study the corresponding
thermal behavior and show that such a model predicts that
the calamitic nematic-reentrant isotropic phase transition is a

continuous phase transition, which is in accord with previous
experimental observations, and the calamitic nematic–
isotropic phase transition is a discontinuous transition, also
in accord with the experimental observations. Furthermore,
our model also predicted that the order parameter critical
exponents of these two phase transitions would not be the
same. Nevertheless, as the theory that we have elaborated is
a mean-field theory, it is not necessary to compare the results
of the present model with the experimental one, since we
knew from the beginning that they would be different. It is
very instructive to notice that even in a mean-field theory,
these two critical exponents are distinct. The reason for this
difference is straightforward. When we measure the orienta-
tional order parameter, we see from the theory that we have
developed above that its dependence on the temperature
would be the one expected by a usual Landau theory. Nev-
ertheless, the free parameters present in S �a3 in Eq. �8� of
the present model� are functions of the micellar deformation
D and, as long as this dependence is not linear, the corre-
sponding critical exponent will be modified. We believe that
the same will occur in the renormalization group approach to
this problem.
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